Home » Genome Technology
A History of Mutation Shows How the Concept Has Changed Science
July/August 2011
By Christie Rizk
The word "mutation" means something different to a comic book enthusiast than
it does to a genetic researcher. But even as it pertains to science, the idea of mutation
has meant different things over time, changing greatly from how Darwin perceived it to
how it is used in the context of the genome.
It is this evolution of the concept of mutation that drives Elof Axel Carlson's new book,
Mutation: The History of an Idea from Darwin to Genomics. Carlson, a professor emeritus
at the State University of New York at Stony Brook, says most geneticists today
conceptualize 'mutation' as a change in an individual gene — an idea that dates back to
the work of Nobel laureate Hermann Joseph Muller in the 1920s. But that is not how it
always was. The term mutation itself has mutated and evolved to suit what researchers
have learned since the time of Darwin.
Beginning with Darwin and pre-Mendelian ideas of what mutation was, continuing through
the Mendelian aspects, work done by Thomas Hunt Morgan with fruit flies, and continuing
through to the ideas of mutagenesis, biochemical approaches to the study of mutation, and
mutation in relation to evolution, Carlson admirably straddles the very fine line between
losing the reader in overly detailed explanations or by being so vague as to say nothing
at all.
The book is a quick read. It doesn't seek so much to re-educate readers on what mutation
is, as it does construct a timeline of how scientists have perceived it through the past
couple of centuries. "The idea of mutation is rooted in our awareness of change over
time," Carlson writes in his preface. "In the life sciences, consideration of
change is essential to evolutionary biology and also, perhaps less obviously, to the
study of genetics. … Many scientists tend to be unaware of how their colleagues of many
generations ago conceived their field. Examination of this process … has the added
benefit of informing us about the way ideas help or hinder the development of a field of
science." Carlson's book presents a history of the concept of mutation, but also a
history of how science itself has changed because of that word's evolution.
The author also seeks to make the reader aware that, though the definition of the word or
the concept of mutation may have changed over time, these changes are the result of
"accumulation of incremental knowledge based on new techniques and
experiments," and that in the "SNPs of the introns and exons of today's genes,
there are still echoes of Darwin's fluctuating variations." In seeking to lend a
sense of history to a word that is used often in today's science, Carlson succeeds.
Monday, July 25, 2011
Subscribe to:
Posts (Atom)